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. HﬁAT TRANSFER IN A TURBULENT LIQUID OR GAS STRBAN*

By E. Labtzko

The theory of heat . transfer from a solid body to a lig-
uid stream could he presented previously** only with limit-
ing assumptions about the movement of the fluid' (potentlal

fl;w, laminar frictional flow). (See references 1, 2, and
3. : '

For turbulent flow, the most important practical case,
the previous theoretical considerations did not go beyond
dimensionless formulas and certaln conclusions as to0 the
analogy between the friection factor and %the uni% thermal .
conductance. (See references 4, 5, 6, and 7,) In order %o
obtain numerical results, an experimental treatment of the
problem was resorted to, which gave rise to numerous invesw
tigations bPecause of ‘the importance of this prodblem in many
branches of technology. However, the results of these in-
vestigations frequently deviate from one another, The ex~
pPerimental results are especially dependent upon the over=~
all dimensions and the specific proportions of the equipment.

In the present work, the attempt will be made to devel-
op systematlcally the theory of the heat transfer and of the
dependence of the unit thermal conductance upon shape and
dimensions, using as a basis the velocity distribution for
turbulent flow set up by Prandtl and Von Karman.

- ¥MDex Wﬁrmeﬂbergang an einen turbulenten Flﬂssigkeits»-
oder Gasstrom," (Abstract of a Dissertation presented to the
Phil. Faculty of the Univ, of Viemna,) Z.f,a.M,if,, vol, 1,
no., 4, Auge. 1921, pp, 268-290, ‘

**As long as the velocities remain much below fhe veloc-

i1ty of sound, compressible fluids (gases) and incompressibdble
. fluids follow, as is known, approximately the same laws of .
Cflswi tHersfore; tn the following,, the .expression for the

flow of fluids will be used for actual 1iquids as well “as
for 2aBES,

NOTE: Translation received from Univ, of california,
Berkeley 4, Calif. .

-
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l.'HYDRODYNAMIC PRINCIPLES

T eSEs. L.

"First of all, the results of the Prandtl Kdrman theory
(reference 8) which will be used constantlv, u111 be se}
forth.

For the distribution of the shear stress in the immedi-
ate vicinity of the wall, dimensional consideratlonq (see
note 1 in the appendix) yleld the expression.

r o L y ¥ My % ou
) o P B J by

(1)

where the symbols are:

u velocity in the direction of flow
.To shear stress at the wall

1 absolute’viscosity

v = u/p, kinematic viscosity

B constant {note 2), (8.82)%

y distance from wall

£ mass density

In the same region, when the shear stress at the wall
is assumed as known, the velocity follows from the equation

(note 3): 2y Yy _ ‘
T 7 7o\ 7
L@ e

There are two methods (note 4) of obtaining the distri-
bution of velocity and shear stress for the entire region of
the fluid. Bither one starts from equation (2) and sets

! 3
uly) =-y{a‘<A°A+.A1y_+vAayi + .. ,)7 (2a)

*The value O0f the constant corresponds to the equabtion
for the velocity. distribution, which is used below, Compare
equation (8),
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in which the constant A, 1is debermined from the reguire-

~ment that-equation (2a) is transformed. into equation . {2) at

small values of y, or the basic equation (1) for the shear
stress transmitted between the individual layers can be ex-
tended and equation (la) can be written

r 74
.T=KLY(y)]7§l’: |  (1a)

in which Y pmust change to y in the vicinity of the wall,
With this basic equation the velocity field for turbulent
flow can be calculated as long as no separation from the
boundary walls takes place,

For the special case of flow in a right circnlar cylin-
der it was shown by Von Kdrmdn that the exverimental results
on tire velocity distridbution can be reproduced with suffi-
cient accuracy if the function Y (y) is made, (called the
influence function).

where ¥y = v - ¥y,

Y

For time and volume invariant, the velocity distribu-

ticn is then:
a Y
y) 7
- - . 3
w Unax [1 <r ] (3)

and finally, the relation of the maximum velocity at %he
axis of the tube upyy to the average velogity v in the
cross section is

v o= %’“max (4)

2, TURBULENT THERMHAL CONVECTIVITY _

In the following, the transmission of heat by matter
only is considered, consequently limiting the study to a
temperature region in which the amount of heat carried off
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by radiation ié negligiﬁle in comparison with that carried

“off”U?ﬁﬁérticle§“0f”matter; Furthermore, the wvelocity . dis-

tribution shall be affected only by external conditions;
that is, the influence of the temperature field upon the ve-
locity field is dlsregarded. At relatively great velocities
of flow where the motion is turbulent, the resulting error
need not be taken into account as long as the differences in
dens1ty in the cross sectlon,,caused by temperature changes,
ara not too greats ' :

Corresponding t0 the ideas taken from those on the con-—
duction of heat in solid bodies, a distinction is likely to
be made in the case of heat transfer in fluids, in general
between the thermal conductivity, which describes the heat
transported by molecular movemént, and the go-called thermal
convection ~ that is, transfer of heat by movements of the
mass. The order of magnitude of the carrier of heat is thus
used as the basis for distinction, A somewhat different
mode of consideration, which pushes into the foreground the
nature of the motion of the carrier of heat, seems, however,
to be more advantageous both for mathematical treatment and
for comprehension of the process. Accordingly, by "thermal
conduction® in liquids is understood the transmission of heat
by the random motion of the molecules, as has been repre-
sented by the concepts of the kinetic theory of gases. I%
then will be regarded as characteristic of the molecular
movement of heat that it is a pure funection of temperature
at a fixed pressure and a fixed density of the fluid and
especially that it is not dependent upon the state of motion
of the fluid, Thermal convection, on the other hand,
shall signify the transfer of heat which results when the
motion of the particles is directed, In many textbooks of
physics free convection is considered as the origination of
a natural flow produced by differences of density under the
influence of the force of gravity. This concept, then, is
contained in the preceding definition,

In the case of lamlnar flow, all the heat transfer can
be accounted for by the foregoing concepts, For turbulent
flow, however, one manner of heat transfer is still unmen~-
tioned., As is known, steady-state turbulent flow is repre-

.sented as having at each point a certain average velocity

vector upon whlch is superposed another velocity vector,
varying in direction and magnitude, having an average value
over a sufficient span of time equal to zero., According to.
Von Xdrmin this kinematic picture can be descridbed more ex-
actly by the reproséentation that vortex filaments with a

‘random motion float in the dulk of the fluid, which moves
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along with a fixed time-~average velocity distribution, The

T Hovenénts of ‘the vortex filaments, as well as those of the

molecules, obey laws of statistics, The fluctuating veloc-

ity vector (time average is zero) is then defined at a point
of the fluid by the circulation and by the relative p051t10n
of all the vortex filaments,.

- This concept leads to introduction, apart from the usu-
al thermal conductivity, which appears as an expression for
the statistical law of molecular motion, of a conductivity,
of turbulent motion which expresses the statistical influ-
ence of vortex motion upon the transfer of heat, It then
will depend primarily upon the state of motion of the fluid,
whlch is especially influenced by the nature of the boundary
surfaces.

The method of accountlng for this phenomenon by intro~-
duction of an increased conductivity for turbnlent motion is
known, Several authors have proposed different basic equa-
tions in which the increased conductivity is regarded as an
empirical function of the velocity, Recognition of the true
circumstances was partially clarified by the considerations
of Reynolds and Prandtl, Both began with the idea that tur-~
bulent friction and turbulent heat transfer are analogous
processes, and that the same mechanigm which in the first
case causes a "momentum transport' leads to transfer of heat
in the second case. Reynolds (refercnce 4) in an intuitive
manner, according to this consideration, went dircetly from
the friction factor to the unit thermal conductance in cir-
cular tubes and compared, as it were, the integral processes,
On the other hand, Prandtl (reference 7) sots up the exact
conditions under which a directly analogous conclusion is
permissible; he shows that in certain casos the temperature
field is an exact image of tho velocity field, so thab
knowledge of the motion permits direct conclu aions about the
thermal ficld, However, he shows that this is clearly not
the case for right circular tubes, so that conclusions can
only be drawn as to the form of the relation beitwecen the
different parameters, since numerical results cannot be ob-
tained. Recent advances (sec. 1) in the mathematical repre-
sentation of turbulent flow and the velocity distribution
correspondlng to it now make possible a mors exact expres-—
sion of the "elementary law" for %urbulent heat exchange, so
that the following statements start out from Prandtl's re-
sults in two directions, by first of all furnishing numeri-
cal results and then allowing a mathematical coasideration
of the different arrangements in which there exists no spa-
tial constancy of the velocity and temperature fields. This
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"makes poSsibBla-a detalled discusaion of etperimental results

to explain individual deviations,
3. THE FUNDAMENTAL LAW OF TURBULENT HEAT EXCHANGE

Pirst of all, the processes of thought applied to the
kinetic theory of gases, which lead to the differential law
of internal friction and heat transfer by random motion of
molecules, will be applied to the case of turdbulent exchange.

Consider a layer at a distance ¥ from the wall; there
the average velocity wu prevails in the direction of flow
and let; |wi be the average absolute amount of the velocity
perpendicular to direction of flow., Then the average velo-

city of flov in two layers at a distance‘t% from the layer

¥y nunder consideration (where x is a kind of "mean path")
ig:

e
H
oo/
g
Wi

The momentum transport per unit of surface perpendiocu-
lar $o0 the average flow is given, introducing a proportion-
ality factor B which depends upon the nature of the coher-
ent parts of the fluid and the formation of the mean value
with respect %0 time, by the expression:

6pw %%-x = T (5)

and is equal to the shear stress T at 7,

If ¢ 1s the heat capacity of a unit volume, then, on
the other hand, the heat transport g per unit of surface,
likewise perpendicular to the average flow, is given by

q = BCw 22 x (6)

This states that the same fluid particles which produce
the shear stress T by their transmission of momentum, also
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transmit the heat. - The proportion.of heab transmitted can
be calculated by a kind of counting of these particles,

One such "counting® is given, as is easily seen, by the
product PBwx (called the coefficient of turbulence). The
coefficient of turdbulence, together with the constant C,
represents an expression for the statistical law of heat
transfer in the case of turbulent flow Just as does the con-
ductivity A in the case of no flow,

The coefficient of turbulence can be calculated from
previously obtained knowledge of the state~ofAflow,-

From equations (1) and (La)

from which (note 5)

. _ L Y, 9.
BW}.—Cp(y)—B-'p—._‘;z;-p‘?Y'? (7)

The bagic equation (1) expresses the total effect of
the molecular conduction of momentum (internal friction) and
of the momentum transport by eddy convection. CLorrespond-
ingly, the basic equation itself, as well as the velocity
distribution originating from it, is to be regarded only as
an expression which becomes asymptotic at very great
Reynolds numbers, where the effect of the molecular condus-
tion of momentum is small in comparison with the second part
of the friction mechanism -~ that is, eddy convection, EHow-
ever, it has been found that the proportionality between T

7
and v % is a very good approximation even at values of %he
Reynolds number which correspond to about five times the
critical velocity, TFrom this, it is concluded that the sta=-
tistical laws for the molecular and eddy transport of momen~
tum can be represented. to a good approximation, even at

- moderate Reynolds numbers, by the general expression (1),

By referring to equation (1) for calculation of Bwx,
i1t is assumed that all the heat transfer can be expressed
also by a general statistical law which summarizes molecular
and eddy processes, It has been assumed, therefore, that
there exlsts in the molegular processes the same proportion-
ality between momentum and energy transfer as exists in the
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- .eddy progesses; that is, it is assumed that the ratio be-
tween A and p  is the same as that between: § .and p.

L The érror committed is negligible for gases, as is

. shown by the following consideration, On the one hand, the
portion of heat carried over by pure turbulent convection is
several times that transferred by molecular condition, as is
shown by a comparison of unit thermal conductance for lami-

nar and turbulent flow; on the other hand, the ratio E%

lies between 1,26 and 0.97 according to the number of atonms
in the gasj that is, the mclecular mechanism of condition of
momentum (internal friction) and that of conduction of heat
are essentially similar, Hence, for gases and superheated
steam, practical and quantitatively correct results ecan be
expected from the calculation. The following derivations

A
are $0 be understood in this seénse, The case where Eﬁ
differs greatly from unity will be referred to once again at
the conelusion of the work,

] By consideration of equations (6) and (7), there is ob-
‘ tained for the total amount of heat q transferred through
a unit surface of a layer at a distance y:

] 7 TN 6/ 0%
f g = - <‘£\ W /7 CY /7 — (8)
\ 3 p / oy

In practice, the limiting value of ¢ for y = 0 =
[}

that is, the amount of heat going out of the wall per uniti
of surface -~ will be calculated as follows: he velocity u
is represented by:

1

: 1
u(Y) =y/7{-Ao"' A1Y+A3Y3 + ., .J

The shear stress T hias & fixed limiting value for
0, and is a regular function of ¥y in the viecinity of
+ 0, Therefore, T can be developed as a power series in

e
o

. t 2
T = Buwxp ngw To + Ty + Ty + ., ..

oy
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Inserting QEW
e e L QY L o
‘ o 5 .
wa - -]-_. TO + le + -Tg:f +'. . e vs/'?
e %A@ + §-A1y + ..,

7
then developing this fractional expression according to

powers of y in the region y = O}

7 7o & 1
ﬁ S e e o ”? l ] + + N . . .
wx 5 T, v \ oy j

[

finally, considering equation (6), yields:

7 To . raﬁ 6@‘
L o= L0 gy . 9
“o o 4o ¢ ;i? oy 4 ®)

4, HEAT EXCHAWGE INY TUBES
When there is steady-state flow through a tube, two
regions can be distinguished:
1, Pully developed flow state - that is, one in which
the veloclity-profile remains gimilar along the direction of

flow

2, The hydrodynamic calming length at the entrance to

the tudbe

Assume, for example, that the fluld flows into the tube
through a smooth passage from a large reservoir; then at the
inlet cross section the streamlines will have approximately
equal velocity, On progressing further, the layers near the
wall will be retarded by friction until the constant (with
length) veloecity profile, which corresponds to the steady
state, has been developed., This part of the tube is often

~called the entrance section,

In the following sections the temperature field and the
heat transfer in the tube are calculated for the case where
a8 temperature distribution for the entrance section is given
beforehand and the wall temperature is kept constant along
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the direction of flow, Separate solutions are set up for

"the twg Teglons mentioned, but by a continuous transition

from the first solutlion to the second, they can satisfy ~the
general function through summation of the partial solutions,.

5., HEAT TRANSFER FOR THE CASE IN WHICHvTHE VELOCITY
DISTRIBUTION HAS BEEN ESTABLISHED AT THE
ENTRANCE TO THE THERMAL SECTION

In order to set up the differential equation for the
temperature field, an element of volume, bounded on the
sides by two concentric ecylindrical surfaces, parallel to
the walls of the tube, and bounded on the "ends by the cross
sections perpendicular to them, is considered, 1In order to
complete the representation it is assumed that a warm fluid
flows through a colder tube; that is, the flow of heat shall
be from the fluid to the wall, Furthermore, the constant
temperature of the tube is set equal to 0, so that the fluid
temperature is the excess temperaturc above that of the wall.
However, since no assumption is made which distinguishes one
direction of heat flow from the other, all relations are
valid when ¢ <changes its sign,

il

If =z coordinate of the direction of flow

distance from the axis (note 6)

i

v
C = heat capacity per unit of volume

then the heat balance for the steady state gives:
) = 09 =
4 2 = Qu &= 2 10
ay{nyq} a 22 ony (10)
From equations (3) and (4), wu 1is revlaced by (note 7)

e e —N\24 1/
uw=&y {} - (X;)}-7
7 r

while g follows from equation (8); then, also considering
(1a), (3), and (4)




AR I i s Bl

s

NACA TM No, 1068 | , ' o1

%, Ya -2 \¥, . .
S s - - 7 ;
¢ = 0.199 - 3/0 -7 ) -
(ar) ‘28 2r dy
If this equation (note 8) is introduced into equation

(10), there is finally obtained as the differential equation
for heat transfer when the conditions of flow are hydrody-

namlcally complete:?

& . 2\, ~
d —-<r2 - -—ze 2981 <i> 17 28
= i peend - D 11
5% {? 2r 37 J = Xy r/ | 3= ( )
where
Yy “ou
r = 8T 1 r)1/ (11a)
7 0,199 v*
The boundary conditions are?
I. 9= 0 fory =r.
IT. 8% = 0 for ¥ = 0, because of the universal symmoetry.

dy
III, The radial temperature distribution must be given
for =z = 0. .

Since the fluid temperature approaches asymptotically
the temperature of the wall, as the tube-length increases,
then the solution is of the form

3 = g(F)e X%

If this expression is inserted into the'equation, then
there is obtained for the function .q the ordinary differ-
ential equation ' L '

g r—'—(l‘z \ sadgl { >B}
<7 =ER = LeKFe(FI< L~
=D Feowme(-C

which, after elimination of the fractlonal exponents by the
trangformation .
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becomes (note 9)

Lla-m - e, (12)

7
7
w = 49kK (g—) (12a)

The boundary conditions are now:
I, g =0 for x =20

11, 38 55 finite for x = 1

An approximate solution is obtained by means of the
Ritz method (note 11), when the problem is changed to one in
the Calculus of Variations (note 12); that is, as can be
verified easily (note 13):

1 -
- ") (&8} L &’ 3] % = mini ' 13
;ép {(1 x’) (d;) wx' g j minimum (13)

with the boundary conditions I and II as supplementary con-
ditions., Here the problem is one of finding the "character-
istic values," since equation (13) will have solutions which
also satisfy the boundary condltlons, only for fixed values
of w, Substituting for g:

glx) = g,P,(x) + g,Pz(x) + gaPslx) + . . , | (14)

in which g,, 2z, g3 are undetermined coefficients and
P;, Pz, and so forth are the Legendre spherical functions

(note 14) of the first kind, and taking only three terms -
first, resplts, for w at the minimal conditions, in an
equation of the third degree the roots of which are

wy = 8,712, wp = 164,36, wy = 1700,40 (14a)

'The characteristic functions are normélized, in con-
trast to the customary procedure, so that
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TSR e = e ewe e g o

81t et gy =1 (15)

in order that the temperature at the axis of the tube will
become unity; g (y) is, therefore, the ratio of the tempera-
ture at the point under consideration to the temperature at

} the axis of the tube. Thus the first characteristic func-

{ .. tions are: ,

A gr = 0,9703 P, + 0,0212 P, + 0,0085 Pg
gryp = 2.6552 P, - 6,1589 Py + 4,5037 Ps

The choice of development according to spherical funec-
tions must be Jjustified., Since it is a minimal problem, the
exact characteristic values can only be less than the ap-
proximate values, The magnitudes of the characteristic val-
ues which are obtained according o the choice of the basic
series equations for the function to be varied, form a suit-
able criterion for the validity of the approximation. Now,
it can be seen that, compared t0 a simple power equation in
x, as well as several Fourier developments, the basic equa-
tion in spherical functions leads to the least characteristic
values., As to their behavior on making further approxima-
tions, the first three approximations for the first charac-
teristic functions furnish successively, for example, the
values 8,75, 8,67, 8,71; consequently the convergence of the
procedure Ought to be satisfactory,

B

In order to obtain equally good results for the other
characteristic values, further approximations must naturally
be made; the third characteristic value, in particular, will
agree only in magnitude in the case of a three-member basic

"equation, As will be seen, however, this has only a slight
. influence upon the results, '

it

e

.
W

The particular merit of the spherical functions for the
problem in hand also can be demonstrated by the following
simple consideration, which can at the same time dispel

" doudbt caused-by the increase of the second coefficients in.
the second characteristic function, OConsidering figure 1,
it is seen that the characteristic values themselves show
great similarity to.spherical funetions, If a form, like
that represented by equation (18), is now set up according
to functions which are identical with the characteristic

Pt Tt e

=74
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values, then the coefficient the index of which is equal %o
the ordinal nufibér of the characteristic value becomes equal
: . to unity, . all others being equal to zero, The characteristic
. - value concerned is already represented exactly by one member
© of the developments,. If developed according to functions
which are not identical with %the characteristic values, Dbut
which have, however, a certain similarity to them, then, in
the development the coefficient having an index equal to the
ordinal number will be slightly greater. OClearly, such a
development will c¢losely approximate, with relatively few
‘members,, the function to be represented, ’

If the values of w from (l4a) are inserted into equa-
tions (1la) and (12a), then for the coefficients of the ex-
ponents

y y - L/
1 4 1l 4 1 4
m:o¢goa@@ :-%=axm56%): ks = 29,42 F %) an

The complete solution of the partial differential equa~
tion (12) can be written as a development according to char=
acteristic functions

oo < k.2

d = algIe-“lZ + angIe—kaz + aagIIIe'- B (18)

where the coefficients are to be determined so that the pre-
scribed temperaturoc distribution is fulfilled for =z = O,

The calculation will be carried out first for the case of
uniform temperature distribution at the initial cross scc-

g tion., Therefore a; ... . a2, first must be determined so
that 9 (y) must be as close to 9 = 1 as possible,. Every
other temperature then follows with the aid of a multiplica-~
tive constant,. The least square error yields the valuess$ .

= 0.048

as =‘1x129; gé.= -0,180, ag

1

Thus the final equation of the temperature field for
turbulent flow in & hydrodynamically complete state in tubdes
- for the.case where. the uniform temperature 9% prevails in
the initial cross section, is ‘
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. LA
e -0151<*>'— )
Kk %%m oo WS Tlo.98a4 x20,0215 x%+ 0. 0668 x°]
H ‘ ) A 1/ .
-, . v 42 B . v
. - Y 844(-’—- | = : ,
w0Q,180 e va/ Al 0.7472 x-4.275 x5+ 6.022 x°) &(19)
1/4
’ ~29.42(2 Z . .
+0,048 e va 4[20,34 x~ 54,80 x* + 35,47 xs%

o

in which the similar powers of x are collected from the P
Qbegendre spherical functions).

It is also recognized now that an error in the third
oharacteristic value and in the third characteristic func-
3on is of slight significance; even if the third exponent

aQuld be still somewhat smaller, the third characteristic
fugetlion dies out several centimeters from the beginning of
the thermal effect, the error having no influence upon the
remalning part of the tube. A fourth approximation always
can be calculated, '

6, DISCUSSION OF RESULTS ANWND AGREEMENT WITH EXPERIMENT

By reference to figure 1, the temperature distribution
over the cross section (of the fluid stream) can be discussed.
For 2z = 0, a square distribution was assumed; that is, the
fluid enters with a uniform temperature over the whole crossg

seoction,
. ' , . v
In the interval between O and 0,8 for 3, the uni-

form temperatﬁre is represented to a maximum error of +2%
(per 1000) by equation (19),
i

For between 0,9 and 1 there is a sharp temperatufe

" “decrease) since only threé term§ Were sonsidered,  Similar
gituations also exist in reality, since the layers near the
-wall will undergo a change in temperature, duec to radiation,
before making direct contact with the wall, On moving far-
ther along the tube, the temperature. gradient at the wall
levels out more and more; the so-called final temperature
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—.distribution, which is represented by the first characteris-
tic function only, is reached when the secdhd characteristic
function has died away. From then on, all temperagture pro-
files remain similar since all temperatures decrease in the
z~direction according to the same exponential function; the
 expression "final temperature distribution™ is to be under-
- stood in the above sense. As shown by equation (16), the
. first characteristic function and, consequently, the final
temperature distribution, differ but little from the velo-
+ ottty distribution in the hydrodynamically complete state,

i |

=
E1
=

i

With the help of the known tenmperature field the point
now is reached where all the questions about the heat trans-
fer can be answered, For example, to calculate the unit
thermal convective conductance «, the ratio is set up of
the amount of heat transferred per unjt of wall surface for
the mixed-mean teuperature difference at the cross section;
that 1s,

a
a = 5 (20)

O

According to equation (9), q, is given by

1,
0,176 v cv . 2 6"’]
Q, = z lim La

and the average temperature Y, is defined by the equation:
k'

3y = -1 [ 9(F) enyay
m.ﬂref (F7) 2nyay

Hence, the oxpression {(note 15) for a is}

Yy -,z ko7 -ka. 2
0 =0, 0346 vC( )4 1.078 o7¥2%+ 0,154 72"+ 0,980 o7 ()
vd 0,970 o~¥1% 4+ 0,024 e~¥2% 4+ 0,006 e~ ¥z%
‘ The analogous result for laminar flow was calculated Dby
- Nusselt., (See reference 6,

Figure 2, which 1s calculated for the special value
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Y, . o o
"“%;(3%““‘*5"@,937, §Hows the varistion of the unit thermal

convectlive conductance with distance into the tube. - A%

z = 0, a« 1is infinite, then, corresponding to the decrease
.in the temperature difference at the wall; it decreases,.-

though considerably faster than it does when the flow is
“laminar, finally approaching a minimum value apjp., Al-

though this least value is independent of the veloecity in
- the case of laminar flow, for turbulent flow equation {21)
is changed into the form:

S : o Y :
Gpip = 0.0384 vC (FE) (21a)

Equation (212) is analogous to the equation developed
by Reynolds, " Since, as mentioned already, the eddy heat
transfer in turbulent flow exceeds the molecular one by a
nultiple, it seems Jjustifiable that only those magnitudes
which are determinative for the condition of flow gnd also
for the eddy transport of heat should appear in the formula
for the unit thermal conveeitive condustance., -These are mag-
nitudes v, d, and v or O, . The variation with tempera~-
ture depends upon the values of the kinematle viscosity V.. '

If the relation for gases %B &z 1l 1s congidered, it is ob-
oo .

served that equation (Ela) likewise agrees in form with the
dimensionless formulas of Nusselt and Prandtl, - (Seo refer-
ences 2 and 7, respectively.)

The existing experimental material is not sufficient,
unfortunately, for an exact test of these results, since
average unit thermal convective c¢onductances were always

‘measured and the "entrance sections" were not chosen long
enough so that in the measuring length a hydrodynamically
complete state with a temperature profile which remained
similar could have been attained with certainty. . In mos?t
cases the point at which the thermal effect began cannot

.even be determined., Obvipusly this is an indication that

. the experimenters possibly did not hgve a clear concept of

the influence of the arrangement upon the results of the

' measurement.'

Nusgselt, in a short series of experiments y connected a

*Researoh work published in reference 7, tadle 6,

L
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riece of tubing 2 meters long in front of the actual experi-
“hental séction, According to the caleulations, which are

discussed in the next section, the state of flow was cer-
tainly complete, Besides, since thig entrance section and

. the heated experimental tube both were made of dbrass and

were Jjoined firmly to one another metallically, the added

“length of tubing likewise was heated, at lesst in the part

directly connecting with the experimental tube, The first
roint of temperature measurement was, on the average, about
15 centimeters downstream from the beginning of the test

‘gection, so that it can safely be assumed from the results

of eqaation (21) that the unit thermal convective conductw
ance had reached its minimum value, These experiments were
checked, using the equation for apin. The results are pro-
sented in the following table (p, air pressure, Y, unit
weight density of air):

Exper- ' ' Differ-
iment | 9 l Pm Ym Vv | %eas | %eale ence
num- i '
ber } (percent)

95 39.0 {0,6133} 1,161} 1.273 | 4,24 | 19,29 | 20.09 4.1y
96 | 37.8 | .6245{ 1.1671 1.285 | 5,75 | 24.95 | 25.36 | 1,64

97 34,2 1 6368 1,164 1,255 | 8.29 | 32.75 | 32.57 -5
98 31,5 | ,6438 ¢ 1.163| 1.307 ;13.06 | 46,8 Iy it} 1,3

99 | 3m.611 05961 1.164] 1. 291 ;21,06 | 65.3 | 67.51 | 3.35

10C 1 32,1 1 1300; 1.167 1.309 QM.OS 73.0 ; 75.25 | ~ 3.0

A

Experiment 95, at a Reynolds mnumber of 6100 (about three to
four times the eritical velocity), was near the limit of the
region of the validity of the above~developed theory, OCon-
sidering the limits of the accuracy of measurements of this
kind, the agreement seems t0 bhe absolutely satisfactory.

In the following sections the heat transfer in the
calping length of a tube (that {s, the heat transfer for the
hy@redynamically incomplete states will be investigated,
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b . Inasmuch as a solution for the veloecity field in the calming
oo i length of a tube has not been given previously, it must
- first of all be determined, . '

e
2, I7 g [
e nea LR

=
B e

X

7., THE VELOCITY FIELD IN THE "CALMING LENGTH"

o

In order to obtain an approximate expression for the

. veloeity field in the calming length of tubes under condi-

.~ tions of tu;pulent ‘flow (see reference 9, for the casec of
laminar flow), the momentum consideration introduced by
Von Kérmin (reference 8, pp. 235 and 256) will be used.

Consider a longitudinal sectiOn through the beginning
of the tube., At A, fluid from a large reservolr flows into
it with a uniform velocity distribution, The layers near
the wall will be retarded under the influence of the viscos-
ity, and the thickness of the layer, in which the shear
stress is transferred (shown by the shaded lines in tho fig-
ure) will increase until the two boundary layers meet, From
then on, with the insertion of a short transition region,
the velocity distribution over the cross section will remain
constant,

SR N DRI
“:.;JL{& [ 1

N

Hence, 1t is assumed that there is at the beginning of
the tube, a region in the interior of the flowing fluld
where viscosity can be neglected, For this reglon, the va-
1lidity of the Euler equation, formulated for frictionless
flow, 1s assumed, :

L

== Y SN W e o

If the steady state is assumed, a balance on an element

. of the boundary layer is considered, which has a ring-shape

structure; a b ¢ & in figure 3 represents a cross section
of this element,

ﬁet‘

5 Q = the volume flowing through the cross section in the
boundary layer per second :

J = the tfansport of momentum per'secoﬁd in the direction
SRR of flow.through the crosgggectional surface

U = the vélocity of free streanm

u = veloctity in the boundary layer

*I,, Schiller, who most recently studied experimentally -
a theoretical explanation also was published - the problenm
of the entrance saction, treats only the laminar caso,.
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.agyw”;;ra§erag§:yelogity_pvet;thehgppss section
8 =.thickness of the boundary layer
fAP = pressure.
y = distance from the wall of the tubde

shear stress at the wall

-
i

z = coordinate in the direction of flow

The equilibrium condition for the element of the bound-
ary layer can then be written as follows (note 16):

EER Ol 7 TR Ta IR PERUSS N | . N
TERAGE LS D e L e e e - TR L

2 .
y ad pU aq . _ dp (2rs = 8 ) m - 2rmT, (22)
dz dz dz

LA

In addition, the following condition appears: Because of
continuity, the same amount of fluid must pass through all

i cross sections of the tube, If, therefore, the layers at

» the wall are retarded, then the velocity of the undisturbed
; fluid (undisturbed always in the sense that no shear stress
is transmitted) must increase. Then, according to the equa-
tion of motion for ideal fluids, this increase in velocity
must be accompanied by a decrease in pressure, This fur-
nigheg additional boundary equations:

ST emRE R
N

‘ 2 2
Q + Ulr - 8) m=vr (23)
2, 0 oo (24)

From equation (2a), w 1is set into the form:

@ Eer®r e

and the coefficients o and B are determined from the re-
quirements:
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Then there résults;

.y @: “ {g_ -%@z.)} (25a)

Results of T, from the condition at (25a) must change
to equation (2) for small valuses of ye

8 '7/4 7/ 1/4

4 v -
T = ———— -— 26
o " F (733) v <6> 26)

Consider the relation, which follows from equation (23),
between the velocity of the free stream U and the average

velocity v

U = . 165v (27)
4£% - 22¢ + 185
in which % = £; then the steady~state condition yields an

ordinary differential equation in £ , with variables sepa-
rated. There is obtained then (note (17):

164 ,5_100 ,2 206 6161 ;% 7
nsg 69 207§+69J ’

° [uE3 - 228 + 165 %

v,
E = —57 = <“§"'> % B g | (28)
¢ —(169y3 TB/ yip 4 7O

Instead of determining the quadrature numerically, the fol-
lowing method of calculation is applied.

For small values of ¢ , the higher powers of £ can
be neglected and there is obtained

. 4
§=F<Z/5>
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It ”ilb“'iS“set‘equalrtoﬂ t, then. £ . can be repre-

sented as a power series in t, Therefore:

WD B e igmteat <o e

E= At + Bt + 0t + . . . .,

Writé'equafion‘(EB) in the form:

(1 + mE + pt® + WE )E -
1 + pt + qt ] - o

- and introduce the above expression; then the fractional
powers of t drop ouit and, by developing in powers of ¢
- and comparing the coefficients on left and right revealing
the history of the boundary layer at the beglnnlng of the
.tube, there is obtained:

: 5 Y \4/5 A &, 3/5/ 18/,
=2 2N\ (B L 2 NS ‘
£=2"=1M (vd> <a/ 0.0ug (vd> _ <d> + 0,168 (vd> \d> (29)

The series is ended at the third term.

In figure 4 (note 18) € is presented as a function of

X = =g 2 ; ¢ = 1 for x = 0.686; thus the length of the

tube up to the qection where the boundary layer fills the
tube is (note 19):

4
z, = 0,625 a <-‘-’5‘—1-> (30)

"With equation (29) the field of the average velocities
" in the entrance section .is.determined and all guestions, for
which knowledge of its variation is sufficient, can be an-
swered., Thus, for example, one obtains the resistance of
the tube between two cross sections at 2z, and 23 of the
initial length; that is, the integral

o
£
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Z2

Zy

by calculating the difference of nomentum transport through
the cross sections =z, and -z, and calculating the pres-

sure difference times the cross-sectional area and then add-
ing the two results.

8, HEAT TRANSFER IN THE ENTRANCE SECTION

For the calculation of the temperature field a similar
consideration is employed by setting up a heat balance for
one element of the boundary layer. Again, let a warm fluid
flow into a tube with constant wall temperature d, = O,

The only simplifying assumption made is that at a place
where shear stress ig not transmitted, heat transfer will
not occur, In so doing the small amount of heat which i1s
continually carried away at the inner 1limit of the boundary
layer by molecular condition is neglected. However, at that
Place the temperature gradient is so small, since the calcu-
lation is carried out for velocities in excess of the criti-
cal, that the error committed can be taken directly into
consideration, Thercfore it is assumed that in the reglon
where the undisturboed fluid flows with velocity U, the
tenmperature always should be equal %o the entrance tempera-

ture 00. The heat balance for the element considered 1s
then?
8 _
d : .
— [uCd 2m (r - y) dy = O, a8 Brmq, (31)
dz. duz

Q

Inasmuch as it already has been seen for hydrodynam-
ically conmplete flow that in the case of turbulence the tem-
Perature distridution is very similar to the veloclty dig-
tribution, ¥ is given as:

@ feered®) oo
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Corresponding to the above assumptions, the boundary

"conditions are:

which permit reduction of the three coefficients a, B, Y
to a single one, - Thus is obtained

@ @D (D) o

The first term is identical with the equation for the
velocity distribution and the second can be interpreted as a
kind of correction term to the equation of the veloecity dis-
tribution, This can be easily understood in a physical
sense, At y = 0, temperature and velocity curves begin
with the same power of 'y, At y = 8, Dboth have horizontal
tangents, The curves must therefore have a similar charac-
ter in the intermediate region,

For q, 41t is found that:

3
1,540 v 4yt 0o, {8/7 + v}
a, = ~ (32a)

VLV Y
[4t® - 22t + 165] * ¢ *q ®

Bquation (31) will now furnish, since the variation of
the boundary-layer thickness & is known, an ordinary lin-
ear differential equation of the first order for determina-
tion of ¥, This differential equation can be brought into
the form: :

ZZ + A(z)Y =.B(z)‘“

The functions A and B are very unwieldy, however,
80 that the general integral of this first order differen-
tial equation:
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C -Jaaz -faaz [0 JEdz
Y = Xe + e Be 4z

would require a very troublesome numerical calculation. A
graphical method 1s chosen, for it is still possible to obh=-
tain far greater accuracy than corresponds to the physical
assumptions of the problem, If 6/r = £ is introduced as a
new independent variable, the equation is essentially sim-
plified, the fractional powers of £ drop out, and after
some calculation there is obtained:

~0,1855 £3 4+ 1,477 t2 - 2,658 ¢

Y o=
0,1623 £° ~ 0.701 £° - 23.05 £ + 45,4

4 .
-0,269 £ + 2,290 g3 - 16,10 ia + 37,59 ¢ yr

—~
3
[¥3]

~r

3 2
0.1623 ¢ «~ 0,701 ¢ = 23,05 £ + 45,4

&y
d

in which ¥! =

In this form equation (33) is directly suitable for
calculation of the directional field of the differential
equation which is given in figure 5a. The point £ = O,

Y = 0 is the point of origin; all solution curves cocme from
Plus or minus © wup t0 a unique curve which leads to the
point 0,0, Since Y must likewise be finite for ¢ = O,
then for the initial condition there is obtained

Y =0 for £ =20

This is likewise readily understandable from a physical
viewpoint, As long as 8§« r, the immediate beginning of
the tube can differ, either in hydrddynamical or thermal re-
spect, from the behavior of a plate in a free stream, It
will be seen later that thc velocity and temperature fields
are the sane in the case of the plate, Accordingly, at the
beginning of the tube (z = 0), the temperature distribution
will ocoincide with the velocity distribution,




;
:
[T
¥
I
b
;.
i

NACA TM No, 1068 -\ , . . 26

If equation (33) is solved in terms of Y! and the

'Llim1t1ng Valie toward which Y'  tends is considered, for

£ = 0, then there 1s found:

lim YV = -0,0323

gzo .
A1l isoclines begin at the point 0,0; the isocline for
Y! = 0,032 with the slope assigned to it, runs into this

point; however, it is rather weakly concave toward the ab-
scissa. The isoclines of greater slope lie entirely above
it; those.with a lesser slope lie below it. TFrom this be-
havior it follows that the solution curve sought must lie
for its entire length in the narrow strip between the iso-~
cline Y' = -0,032 and its tangent at the zero point, The
line Y = ~0,032 £ will, thorcforo, rcpresont a first ap-
proximation with a maxinmum cerror of 12% perecent,

In order to obtain a second approximation, Y is set
equal to =0,032 € + n(€) and this expression is introduced
into equation (33), which then changes into a differential
equation for h, the family of isocclines of which is shown
in figure 5b. In order to incerease the accuracy, a thousand-
f0ld scale of ordinates is chaosen.

The solution naturally begins with h = 0 for £ = O,

If e 1s set equal to 1000 h, then this magnitude, as
ig easily proved by plotting on a logarithmic scale, is
given by the formula e = 1,48 £1-F65 g0 that the following
expression for ¥ is finally obtained:

Y = «0,082 £ + 0,00148 {1-865 (84)

Thig function is given in figure 5a by the deep, solid
line.

In this manner tho'temperaturc field for the region of
the simultaneous hydrodynamic and thermal calming length is

.obtained. Then for 4 may be written:

y .
d= 9 () 7{—-- l"a— [o 00148 £'°®°%_ 0,032 £]\ (35)

J

The values Qf 8 vand' gliéféwfékéﬁhfrdﬁ”;Quatién (29)
and figure 4, respectively. For £ = 1, & becomes

. V . . a
¥ = Y, (%) ’ {1.1}12 - 0,0819 % - 0,0305 (%) } (35a)
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that is, the final temperature distribution for the hydrody-
“mamical steady stateé is not attained (fig, 6), which was,
perhaps, to be expected

In order to get further agreement, every solution of
the differentlal equation for the temperature field beyond
the hydrodynamic calming section, which also satisfies the
initial condition (equation (35a)), is determined, To this
end the function represented by equation (35a) must be de~
-veloped according to the characteristic functions. (See
equation (16).) Since the temperature distribution of egua~-
tion (35a) does not differ very much from the first charac-
teristic function (equation (18)), the development is carried
out with only %wo members,

The development naturally cannot represent the function
(35a) quite exactly, because at one time the veloeity dis-
tribution was esbablished with the "influence factor," the
other time with' a power series development, However, in
crder to obtain the best possible transition from the one
solution to the other, it can be arranged that the two tem-
berature curves agree completely in important properties.

The heat transfer is limited by the processes at the
wall; accordingly, it will be stipulated that: (1) both
curves begin with the same term of the development at the
wall of the tube, and (2) the flow of energy through the
whole cross section be equal.

This furnishes two equations of condition for determin~
ing the two coefficients of the development. Hence there is
obtained for the temperature field in the hydrodynamically
complete region ’

= B {?.Ola-e'klz [0.9544 x ~ 0,0212 x3® + 0,0668 x°]

i

e 2

0.051 [- 0,7472 x - 4,275 x® + 6,022 xsj} (36)
’ 7
Knowledge of the temperature field first shall be used
for calculation of the unit thermal convective conductance.
The calming length first will be considered. -

‘Equation (38) already has given an expression for dge
The averageujempegature of the cross gection is then:
‘ r

Dy = ;%; w/pﬁzﬂ(r -~ y) 4y + 008/p2n(r -y) dy

(2]
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. q
The expression for o, (o, = q in the hydrodynamical
“calming region) is then: ‘

3
%y = 1,340 vOC <§%>

1.143 - 0.032¢ + 0.001k4g¢ 1+ 865
(372)

1,865

- ’ E ' o
(uéa-22£+165)4ﬁ*{}-0.133£+0.92u52+(o.001usﬁ 70.0322)(o.5eo§_o.1u5u£°)}

-

The continuation in the second region (ag = @ in
the hydrodynamical steady-state region) is:

+ 0.038 e“kgz (37b)

'kaz

"klz

1,
@y = 0.03461 v (JL> f 28 e
va, 0,873 e *° + 0.0068 e

The variation of the unit thermal convective conduct-
ance with location in the calming length of the tube is

shown in figure 7a (note 20), Write equation (37a) in the
form
ENEY
a, = KvC (J%> * “(keal/nr n® °C)
T .

then the factor X, which is a pure function of £, is
Plotted as ordinate, with £ as abscissa, Figure 7. (note
21), in combination with figure 4, from which the particular
values of £ can be takén, covers all possidble cases. In
figure 7B, with =2z as the abscissa scale, the variation of
o - for a certain case is shown in comparison with the saume
case for the completely developed hydrodynamic flow, It is
seen that the decrease of o« takes place less guickly in
the first case,. S ‘ : : ‘

9., SUMMARY AND GOMPARISON WITH OBSERVATIONS

Now comes the point where the heat transfer in a tube
can be surveyed in all particulars, The results will be
summarized briefly:
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1

With respect to heat transfer, the following cases in

~~which the-heat transfer obeys different laws are to be dis-

tinguished according to the structure of the velocity and
temporature fields.

1, Fully developed hydrodynamic and thermal fields.-
This condition is attained when the fluid has passed through
a considerable portion of the tube length, The unit thermal
%onvsctive conductance is congtant and ig given by equation
2la

2, Fully developed hydrodynamic flow field, temperature

uniform at entrance.,~ Realized by a connected entrance sec-
tion which is maintained at the original fluid temperature
by suitable heating, The unit thermal convective conduct-
ance is dependent upon the location in the tudbe, falls very

qulckly from its maximum value, and asymptotically approaches .

a constant minimum value, (See equation (21).

3, Uniform velocity and temperature distributions

across the section at entrance.- The unit thermal convective
conductance is likewise dependent upon the location in the
tube, dut falls to a minimum value more slowly. The point
unit thermal convective conductance io given by equations
(372 and 37b),

4, The application of heat begins at a scction somewhere
in the middle of the calming length,~- For this last case a

good approximation for the unit thermal convective conduct-
ance o 1s obtained by drawing the curves which represent
the variation of a with the location in the tube for cases.
2 and 3, in the same system of coordinates dut with the zero
point of the abscissa scale for o, (a fully developed hy-

drodynamic flow) displaced by the distance 1 Dbetween the
beginning of heating and the inlet section, Since the curve
for ag has a much steeper slope, i1t will cut the curve for

;3 the envelope (note 22) represents (to a first approxima-
tlon) the a distribution for this special case,

The great differences in the results of the individual

“ experimental works are now understandable,. . Whereas Nusselt

ascribed this, at the conclusion of his work on heat trans-
fer in laminar flow, exclusively to the conditions mentioned
under point 2, now the possibility of a series of factors
which 1nfluence the process by interchangeable combinations
may be seen,
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The two most careful investigations known, those of

‘Nusselt and Jordan (refercncés 6 and 10, respectively), usecd

a right-angle gas approach to the mecasuring scction, At the
beginning of this section the flow was not completely devel-
oped. Obviously case 4 is to be considered here. ¥No fur-
ther experimental data, however, have appesred to datc, The
beginning of the thermal action, as woll as the exact posi-
tion of the first tomperature-measuring station, cannot be
ascertained accurately.* An exact evaluation of the exper-
imental results on the basis of the above-mentioned theory
is not possible for these exporiments, Novertheless, a
serles of experiments by Nusselt were investigated to deter-
nine the magnitude of the measurecd unit thermal conductances
with recspeet t0 the minimum a. The resulits arc compiled in
table 2, OConsidering the dimensions of Nusselt's apparatus,
it is seen that these figures are affected by them, which is
to be expected according to tho above-mentioned derivations,

TABLE 2
ﬁxper—i f ‘ ' Differ-
iment | 7 Pn | ¥n Yo vV |%meas [“min ence
NUMN e
ber (percent)
7 0.5906 | 1.153+ 43.7 | 1.245| 8,52 | 35.7 33.43 6.l
10 .5983 | 1.152 | 35.3 | 1.278| 18.33 | 65.5 60.4 8.1
13 5880 | 1.171 | 31.6 | 1.315]| 27.2 91.7 82.6 11.0
1 .7870 | 2.050| 69,0 | 2.050| 8.94| 57.3% 50.9 12.5

2y .6022 | 1.883 | 30.4| 2.122] 29,94 | 146.6 | 127.2 15.3
30 | .6178|3.96 | 31.9| L.M5 | 10.87 | 124,8 | 103.8 | 20.0
Ll 5988 | 6.97 | 29.2] 7.91 | 9.27|162.9 | 1M1.6 15.1

5l 5863 | 9.98 | 26.0! 11.41 | 10.04] 233.0 | 198.0 17.7

If experiment 10, for,éxample,,_axg_pvaluated with the

assumption that casec 3 is 40 be considered herc, which comcs
closc %o the experimental conditions in any caso, then a

*These fésults.aré based on g letter sent to Latzko by
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value of « 1s obtained, which 1s 10 2 percent above oapiyp.

In reallty the hydrodynamlcal condition of uniform distribu-
tion of velocity at the first temperature~measuring station

‘was not complotely fulfilled, so that the value of o must

fall somewhat lower; tho mcasurcd value is 8.4 percent above
o
min®

According to equation (28), the length of the calming
section is proportional to 3?5; accordingly the ratio of
the calming length to the total length of the measuring sta-~
tion must increase with increasing velocity, and density and
therofore the values of o also must increase somewhat,
Experiments 7, 10, and 13, in which the velocity is varied,
the other parameters being maintained reasonably constant,
show this clearly, as do experiments 7, 19, 41, and 54, in
which the values of p are changed up to a ratio of 1:10,

10, PRACTICAL COMPUTATION OF THE AMOUNT

OF HEAT TRANSFERRED

Finally the question of the practical computation of
the amount of heat transferred in tubes must be discussed,.
Because of the fact that two different solutions for the
tempoerature field have been obtained, dcpoending upon whether
or not the hydrodynamic field is fully developed, it is nec~
essary also, in the computation of the amount of heat trans-
ferred in a certain section of the tube, to determine in
which region the flow takes place. However, several gener-
al remarks, which hold for both reglions, must be presonted
firsta.

The amount of heat transferred hetween two crossgs sec—
tions at an interval 1 = z;, - zZ3 can always be found in
two wayse - :

1, The calculation is referred %to the volume of fluid
passing through the cross section per unit time. Since the
volocity and temperature distributions are known, then the
flow of heat which passes through the cross-sectional area
per unit of time can be obtained by integration, The amount
of heat transferred at a strip of wall of length | Dbetween
zy and zz thus is given by the difference of two integrals:

Q= CL/[u(y.Z;)ﬁ(y.z;)df - G~/hu(y.23)ﬁ(352a)df (38)
£ : CF
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where df 1is an element of area in the cross section the

- form-of-which depends upon the choice of y.

2. Only the processes at the wall are considered, For
this purpose the equations for gq, bhave been set up. With

the foregoing notation, the amount of heat transferred is
then: , .
Za

Q = ZrWL/qu(z)dz - : _ (39)

23

the term 9, in g 1s replaced by the difference at the

cross section 2z, Ybetween the wall temperature and the
temperature at the axis of the tube.

The expressions for ¢, are, however, rather unwieldy,

so that equation (38) is usually preferable. As an example,
equation {(38) will be applied to the most important cases.

l1a, For the case where a uniform temperature distribu-
tion and a uniform velocity distridbution prevall in the ini-
tial cross section, the hest transfer in the entire entrance
section is?

2
Q = 0.115 r°mvCd, (40)

The value is constant since the temperature and velocity
distributions coincide at the initial and the final cross
sections., The special cases differ in the length of the
tubo section from the inlet opening to the fully dovelecped
hydrodynamic state, '

" 1b, Considering a section of the tube from the inlet to
a cross section at a distance L and letting 1 be the
length of the entrance section, then, (using equation (36)),
the total heat transferred in the length L 1s: : :

. k4l : I )
Q = rzvv06°~{l.- 0.886 ¢ kKaby 0,0037 e k2 1}: (40a)
where 1 =L - 1,
2, In the fully developed hydrodynamic state the amount

of heat transferred from the beginning of the heating (z=0)
to a cross section 2z a%t a distance 1 from it, comes toi
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- Q=mr®vod, {1 - 0,985 e ¥1'0,013 ¢”¥2'.0,0022 e"ksz} (41)

11, ESTIMATION OF THE INTERNAL HEATING

OF THE FLUID BY FRICTION

In the previous derivations the generation of heat in
the interior of fluids by friction was entirely disregarded,
An exact consideration of this is not possible as long as
the pulsating velocities are not known individually, knowl-
edge of the distribution of the (time) average velocity be-
ing especially insufficient for this, since the pulsation
velocities contain the dissipation function in quadrature
terms, However, an attempt will be made to determine, by an
approximate consideration, in which veloclity region the
above~mentioned neglect of this term is allowabdble. In doing
this, only processes in the fully developed hydrodynamic and
thermal states -are considered; tha% is, the unit thermal con-
ductance must be independent of the location in the tube.

It is assumed, for example, that a cold fluid flows )
through a heated tube, an element of volume bounded by the
tube and two cross sections at a distance dz 1is considered.
Let 9§, be the constant wall temperature; let 9(z) be the

average temperature of the cross section at the position z;
and let the difference between wall and average temperature
in the initial eross section be designated dy 4,. Then the

heat balance on the element reads!
rnvead = ald, - §)2rndz + Tl{v 2rudz (42)

where T 4is the thermal equivalent of work and § is the
ratio of the frictional resistance to the square of the ve-
locity. ZEquation (42) +then is written in the form: :

& t
L B (aw+T—iv3>
dz rvC rvC a

The term T-L v® has dimensions of temperature;

aq

T £ v® will be called the friction temperature and will be
04

designated by dg.
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~With consideration, of the initial. conditions at 2z = 0, -
the solution of the differential ‘equation (42) is:

. 2a
) - 7 ,
= (6w + dg) - e A (s, + éR] . - (43)

Hence, the temperature of the fluid is proportional tb

the wall temperature increased by the friction temperature.

, If this relation is plofted in a system of coordinates
with 3 as ordinate and =z as abscissa, then there is ob=-

~tained the clear results of figure 8, which are drawn for

the case of air flowing with
v = 200 m/sec r = 0,025 n p =1 atn
C

i

0.282 kcal/m® v = 0,175 cm2/sec

The fluid temperature asymptotically approaches a limit
which is equal %¢ the wall temperature plus the friction
temperature. Since the amount of heat transferred is pro-
portional to the areas (which are crosshatched in fig. 8)

betweon the straight line 9, = constant and the curve of

the temperature of the fluid, it is seen that there exists
such a relation between the length of the tube section and
the velocity of the stream that, for a given length, there
exists a certain volocity and, for a given velocity, there
exists a certain length of tube for which the maximum heat
is transferred,

Q e

The factor is then:
L. oo.108 L
a ve
and, therefore, if the slight variation of the heat capac-

ity with temperature is disregarded, it is a function of ve-—

_loclty alone. For ¢ = 0,238 kilocalorie per kilogram ©°C,

‘for air mas Veon c¢alculated for seweral velocities and
compiled in the following table:

v = 10 25 50 100 - 150 200 m/sec
-}

1l

0.102° 0,634° 2.54° 10.15° 22.80° 40.8° ¢
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It can be seen that neglecting ﬁRH_ig‘déyectly pernig-
sible in most practical cases. ' ‘ ‘

The heat carried away is obtained by substitution of
(23) into the equation.

dQ = a2rmwdz (9, - ¥,)

and integration between =z, = 0 and Za = 1 to
| L. 2ol 1
Q = d,rPnvC \1 - ¢ TVC 6Rr v G ( > (44)
20l

in which higher powers of rvC are neglected,

12, HEAT TRANSFER ON A FLAT PLATE

As a second geometric configuration for which the heat
transfer will be calculated, the flat plate parallel to the
direction of flow is chosen., The plate shall be so thin
that the influence of the forward edge can be neglected.
Prandtl, in the previously mentioned work, has already shown
that for the case of an infinite thin plate, which is moved
rarallel to itself through a fluid, the velocity field and
temperature field agree, if the heat from the internal fric-
tion is neglected,

If u denotes the velocity vector and p denotes the
pressure, then, for the time change of the momentum vector
of an incompressidble fluid referred to a unit of volume, the
result is, neglecting gravity effects (note 23):

Du .
p -dT = e grad P + p‘Au
, (45)
2 -2 2+ o+ ou,

‘

On the other hand, the Kirchhoff differential equation for

the temperature field is:
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. . A S | (46)
d-t . cp . - . e

For the plate, p is a constant, in case it is infi-
nitely thin; or, in case the plate thickness is finite, the
average value of p over a certain region is still a con-
stant; grad p is, therefore, equal tc 0 and it may be sceen
that the two equations (45) and (46) agree in form. When

St = 1, a solution of (45) also will be a solution of (486),

If use is made of this condition when the soclution for
the veloclty field, as given in the previous work by
Von XKarman, is accepted therc results:

A Y,
w=U (%) , & = 0,366 (ﬁ%) z (47)

and correspondingly:
Y,
s (L
- (8)

The condition for thermal eguilibrium in an element of
the boundary layer is:

8
s NYe Y,
EL:/ U (i) Cdo <g> dy - Cd, _...U/n <‘> dy + qo = O
Z'o 6 6 [

Introducing equation (47), solve for q, and obtain:
9, = 0.0285 (3-0 Ccu ({I—z— ‘ |

The total amount of heat leaving a plate strip of unid
width is then (note 24):

1 .
Q= /[ q.daz = 0,0356 ove 1 ()5 (a5)
Q= [ qpdz = O, St (FH)y (4

[+] .

(1 = length in the direction of flow).
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13, TRANSMISSION IN LIQUIDS
In the preceding section 1t has been seen that the laws

for the heat transfer in a turdbulent fluid stream, derived

for the two most important basic geometric forms, lead, in

" the casc of flowing gasecs (anda supcerheated steam), to re-

sults which also agree well quantitatively with experiments,
Here the statistical basis of the kinetic theory of gases
can be used to arrive at a uniform concept of the molecular
pProcosseos ag well as the cddy proccsscs in friction, on tho
one hand, and in heat transfer on the other hand, ‘

Yaturally, one cannot transfer the foregoing simple
consliderations directly %0 liquids, where the effect of the
molecular forces of cohesion may no longer be neglected.
Whoreas the heat and momentum convection through the cddy
system also represent here processes which are similar in
character, this is no longer true of the molecular conduc-
tion of heat and momentum, which finds its expression in

‘ Ao :
that the ratio 5; ig very different from 1, For water,
AT
the magnitude of this ratio, which is quite dependent upon
temperature, is about 0,1,

The mutual law for the molecular and eddy phenomena of
internal friction, which is represented by the coefficient
of turbulence, will be applicable to the propagation of hcat
only in that region in which eddy processes dominate, How-
ever, this is the case for the entire mass of fluid up to a
very thin layer* at the wall, Accordingly, the differential
equations derived in the foregoing will maintain their va-
l1idity everywhere except in this thin layer,

To attain a suitable description of the heat transfer

- in fluids, it will be necessary t0 seek a transition from

*Closer investigation shows that this layer is much
smaller than the boundary layer itself, which was defined as
the veéglon in which shear stresses are transmitted, For the
right circular tube, the thickness of %this layer in the hy-
drodynamically perfect state is-given by .the expression

5 = 5. 51 —%n where is the diameter and R is the

Reynolds number,
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the statistical law for the interior of the mags of fluid

‘(coefficient of turbulence) to the molecular-law in the very

neighborhood of the wall (thermal conductivity). Mathemati-
cally,. this transition can be made by a modification of the
boundary conditions., This extonsgsion of the theory shortly
will Dbe discussed morec c¢loscly. Still, it is t0 be noted
that oven the previous exporimental results of rescarch,
which relate exclusively to heat transfer in water, show re-
sults deviating so much from one another that only with d4dif-
flculty can a picture of the process be made clear 1o some
degree,

At considerable expenditure, Soennecken (1911) under-
took experiments on the heat transfer of water in tubes.
These oxperiments aro frequontly citod in modern litcraturc
as auvthoritative, His results are summarized in two formu- .
las for the unit thermal conductance a:

1., Smooth surfaces:

049

o v keal
o = 2020 ~m—e (1 + 0,014 T;) —=822
gt *"ar n® %

2. Rough surfaces:
Oe? 1 1
v kca

a = 735 —57;m (1 + 0,014 T;) > o

d hr m C

whers
v water veloeclty, meters per second
a tube diameter, meters

T; intermal tube-~wall temperature, degrees centigrade

By "smooth surface" is understood a seamless drawn-brass
tube; whereas the experiments with "rough surfaces" were
verformed with iron tubes. These formulas directly contra-

‘dict the fundamental ideas on tho nature of the heat transfer

preseated hero, It is out of the questlion that the unit
thermal conductance can be smaller in the case of rough sur-
faces than it is for smooth surfaces., Because of the in-
creased eddy formatlon, the eddy transport is increased and
consequently the unit thermal conductance is incresased. The
smallor valucs which werc measured in the case of the iron
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tubesg are most probadly as scribable to an incorrect determina-
tion cf the actual wall temperﬂture due to the presence of
layers of boiler scale and rust,

Extensive experiments on condensers were performed by
Jogse in Charlottenburg, Josse measured the over=-all unit
thoermal conductance k of condensing steam to water, which
is defined by the formula (reference 11): '

—

y

where

3,z unit thermal conductances of the fluids
A thermal conductivity of the partition

) thickness of the partition

Since Josse substitutes for AN and & the known values and
uses the figures of Nichol (about 4500 keal/nr m?® °C), which
represent in magnitude a mean between the figures of
Soennecken for smooth and for rough surfaces, for the heat
transfer in the water, he obtains unusually high values for
the heat transfer from condensing steam to metals, Accord-
ing to these experiments the unit thermal conductance for
condensing steam would be about seven times as large as that
for flowing water.,

These results are likewise not understandable. Accord-
ing to Nusselt (reference 12), the process of condensation
on a cold perpendicular wall produces on the cold side of
the surface a film of water in which oceurs all thce drop
from steam t0 wall temperature. The film of water clings -to
the wall, the remaining layers flow downward under the ef-
fect of grav;tV. Since the thickness of the film of water
is very small in any case - fractions of a millimeter accord-
ing to Nusselt's calculation - the flow obviously must be
laminar, It is impossible to understand why the unit thermal
conductance from water to ‘the metallic wall should be seven
timas greater on the ono side of the wall (wnoro the state
of flow is laminar) than on the othor sidc (wvhere there is
turbulent flow).
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.The experimental results of Josse accordingly ought to
have sone other explanation s0 that' 'k,  the.-over-all unit
thermal conductance, is represented by two terms, approxi-

mately cqual in magnitudo, A ana - where oy and oap
are average values, '

It seems quite probable that, for this reason, the unit
thermal conductance for water has higher values than were
frequently assumed previously. An extensive experimental
investigation of the heat transfer to fluids seems to be
urgently needed in order to be able to test the accuracy of
the thooretical calculations, The difficultios which are
encountered due to formation of rust and scale when water is
used, suggest the use of other fluids, such as oil, for ex-
ample,.

Translation by L. M. X. Boelter,
G, Young, and 4, G, Guibert.
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-+ BXPLANATORY NOTES BY THE TRANSLATORS
NOTE 1

The equation,

. ¥, Y Y.
T =L (1) ) W) ) 9—‘;-

can be obtained in the following manner, Postulate that the
1/7-power equation for the veloclty digtribution holds near
the wall and that the shear stress at, and in the vicinity

of, the wall is a function of y, the distance from the wall,

and of 9%, tho volocity egradiont at that point, Then,

oy
I = P . ..a..g'..
P (y oy

divide by the particular velocity gradienf, which gives

I
P -z . 2u
w0 B
oy

From the 1/7-power equation (see note 3),

4 1

T / L3 /

u =3B ("—9—\ ’ <£‘> 7
P/ v

there is obtained:

4 . Y, -¢
FHONONON
Rdy T \pl. V) \N"/ Ce
or

. 4 Y .
R ONCNON
ou B \p v
¥ 4 |
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"In the vicinity near .the wall, let

au v QE
v-)0< ’ay

therefore

rT To .

P - '5‘

du

o [(-> ®" ]
or ¥y=>0

T =27 3/7 ps/'? p,]/7 yen-)/? Q.ll_
5 0 o3

Latzko dropped the subscript (y-»o0) and stipulated that the
equation is valid only in the vicinity of the wall,

NOTE 2

Sydney Goldstein (Modern Developments in Fluid Dynamics,
Clarendon Press (Oxford), 1938, pp., 339-340) recommends a
valuec of 3B = 8,7.

NOTE 3

For fluid flow near the wall in smooth pipes the wvelo-
city u 1is determined by the following variables: To, the

shear stress at the wall; y, the distance from the wall;
P, the density of the fluid; and v, the kinematic viscosg-
ity of the fluid, 3By dimensional analysis there is obtained

A comparison of this equation with the Blasius resistance
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formula. (empirical) for flow in smooth pipes (see Goldsteln,
Modern Development in Fluid Dynamics, pp. 339-340) allows
the determination of the magnitude of the exponent =n and
X; so there results the l/7-power equation for velocity

distrlbuuion,
r \%9 K
w=3 /—9-) (Y.\
_ \p v/

NOTE 4

As an attempt t0 correlate the hydrodynamic principles
presented by Latzko with the more rccent knowledge of veloc-
ity and shear distridbutions, the Prandtl mixing length was
calculated from equation (7) and compared with those derived
from Prandtl's and Xdrmdn's logarithmic formulas for vcloc-
ity distribution and also with that obtained from Nikuradsels
data.®* Although there are some inconsistencies in Latzko's
equatlon (inconsistencies also appear in Prandtl's and
Kdrmdn's equations), the variation of the mixing length does
have the same trend as that calculated from Nikuradsels ex-—
perimental data and differs from it only by a eonstant ratio

. ! (Wikuradse) =
3 b4 = . H f
of approximately 1.25 < T (L ) = 1,25 The method o

calculation and the results are shown in table A~1l and fig-

The most important inconsistency appears in the deter~
mination of the velocity distribution near the wall, Recent
developments indicate that the velocity is a linear function

-
( = 5%-£> of the distance from the wall in the laminar

sublayer, Latzkol's expression for the velocity distribution,
however, approaches the 1/7-power equation near the wall and
would yield an infinite instead of a finite velocity gradi-

ent at tlhe wall’ (’By R ¥>., Latzko may be justified in
y=0

using such an expression by the faet that his expression for

*Séo Bakhmetev, BOris.A,§ The Mechanics of Turbulent
Flow. Princeton Univ, Press, 1941, p. 73. .
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e e ¥
shear gtress is T = K (y)w7“§§ﬁ“ which could yield a finite

value for T,, however, because the product of zero and in=
flnitJ is indeterminate. :

 KOTE 5

The term Bwx, called here fhe coeffic1ent'of turbuj'_
lence, 1is 1dentical with the modern term "eddy diffu31vity,
€ 1in

ou

T €

:zp ay
N¥OTZ 6

From this point on, ILatzko uses y for the distance
from the pipe axis, Up %o this point, however, he used y
as the distance from the wall and ¥ for the distance from
the axis, To aveid confusion, this translation continues to
use y for the distance from the wall and §F for the dis-
tance from the axis only. The equations that follow have
been altered (from the original) to conform with these orig-
inal definitions,

NOT®E 7

The original article gave_the equation,

SER G
Rl

NOTE 8

-qm

The derivation of
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% Y. . :
' -‘”*v~36~13w-ny“_7 A% oo
. -~ (2r)7zs 2r -y
from equations (8), (2), (3), and (4)
Bquation (8) ‘

Equation (2):,

T 4/7. X7 1/7
= B (> i
b <$>> <P>
Equation (3):
2 vy,
u = u fl - <i> ]
max | v/
Equation (4):

From equation

{(2) there is obtained

% i %,
.(TJ\ ’ u - u *
\p j B-C{)%& 3@@<?>§%e
v
But by equations (3) and (4), |

et {I*C\}
‘”??was,, . Ms . é 8. Rpe-
0 e <#>‘ 1 - \?) \

therefore

46
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- @7
% <'>/ée

Substituting into equation (8),

@

O” L-@)
" v»SCYQ$ L]
::‘/4 <>/as oy
' 3
L& /2 8
l/ 6/ 1 - Z)
a. 2 -
_ L xs) v%vv‘*(}(r 'Y) 88 ) \r/
BZZ 2r oy y

and since

¥ ) rzy 2r 2r
thus
Vi 3 3, vy 6
3 4 74 2 2_Y Yo ¢
g = (22X 8 4”vv0<r~y>79.«‘>_<1-_y._>”
B7a (2r) %28 2r dy 2r
. v e .
and taking (l - 5?) = 1, which is approximately true in

the vicinity of the wall (¥ small), yields
3 1/, &/

/
0,199 v v G (ra - 3;2) T
 (2r)%s 2r dy
NOTE 9

Transformation of eguation (11) to equation (12)
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Bquation (11):

B L) N2 Y,
L. -y 38 _ {1 - <;> 7 2
oy r oF S T : z
where
e
‘- K v%. (21) Y
- Ya
7_x 0,192 v
Let
3 = g (F) o~ K?2
then .
28 . ¥z i
oy dy
and
9—?; = .- keukzg(y)
oz

Substituting in equation (ll) yields

(DG - v {1 (5
To simplify let ‘{l - <~> }

or
?a = (1 - x") 22
then
2F4F = - #° 7 x°dx
aF = ' 7 x 4dx

¥

there is obtained

N\
- 49kK (—2—> x7g B wx”g

By substituting,

il

a f 7y 08
‘é‘;L(l‘X)S—-
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where'

= 49kK ( &
v 4»kK <;>

NOTE 10

‘The original article gave

. oo 8/
r 7
= x [ &

I4 should read

(a)

(v)

B

%
w = 49kK <§>

NOTE 11

Some references to the Ritz method of solution of
differential equations,

Ritz, Walter: Uber eine neue Methode zur Ldsung
gewisser Variationsprobleme der mathematischen
Physik., J. f., reine u. angew, Math., vol. 135,
1508, pp. 1-61. | ' o

Tver eine neue Methode 3zur Lbsung_gewiSSer Rand-~
wvertaufgaben. GB8ttinger Nachrichien, 1308, pp.
236-248, ' S ’

Both in "Oeuvres de Walther Ritz,' Paris, Gauthier-
Villars, 1911. - »

’ Timoghenko, 8.: Vibfation Problems in Enginéering,

D, Van Nostrand Co., New York, 1928, p. 259. .

The manipulations involved in the Ritz method as ap-
plied to this problemn. ‘

1, Insert the Logondre sphcrical‘fﬁnctions of the
first kind into eguation (14). Thon, ‘

49
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3 15 5 70 3, 63 5
= - + =2 x + [ = - L= x "+ 22 oo x
g(x) <81 5 g2 B g3> X _(2 g2 8 g;b | g o3

2. Now differentiate equation (14) with respect to x

to obtain ag

deg 3 5,63 "
g’;=<gz-§ga+——gs>+3( ga-——gs>xa+ 5 8a%
3. Substitute into equation (13), the value of g and
3
gé obtained in steps (1) and (2) and integrate.
x
Then, _
2 1
af 1"y ) - g% dX=< g1 ~38182+2 g185+2 @2 —2eaes +( 5)2 3>
dx L4 L 8 (8)
lﬁ 0 210 0.1 2
5 % *J{rg +*—-7- gze’%‘a“z—glgs‘*' TG 283 76’-& ) >

(B' 7 —-—gzgs ——E-g 2&at }%fég >4<5 %?-g 3—25-9&&‘; )

30 WY5.65  63.70 7.25_ wY63Y
T\IvTEATTE 528 e ) EI’@')

4. Then differentiate the equation obtained in step (3) with
respect to g1, g2, and g5, ylelding the three equations

BJ, 'aJ od .
for -é—g-; a and 5——', where

ga
/{(1 7)( - wx a}dx

_ and set them equal to zero.
adJ o
3 © 0= (1.75= 0.2 w)g,+ (0.875~0,1167 w)gz+ (1.22-0.04 w)gs
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33
555=0 = (0.875- 0.1167 w) g3+ (6.5%~0.092 w) ga+-(3 43. 0, 06 w) gy

3 ' |
5a,=0= (o 22-0.042 w) gy + (2.41-0.05 w) go+ (11.45~ 0.053 w) g,

od _ 3J._ 2J
gy Ogz  Ogs

nants of the three ecuations to zero, a third
degrec algebraic equation involving w 1s ob-
tained: '

5. Set = 0; by setting the determi-

109,3 - 13.3 w + 0,088 wZ ~ 0,000027 w° = 0

6. Solve this third-degree equation in w, to obtain

the three characteristic values, w; = 8.712,
wo = 164.36, and wsy = 1700,40 as given by
Latzko,

7. Substitute these characteristic values into the
three equations in step (4) to obtain three sets
- of 2y, 82, and g, and insert these into
equation (14) to obtain equation (16) and thus
equation (18),
8. The values of a,, az, and a; in equation (18)

are obtained by the method of least squares,
thus yielding equation (19),

NOTE 12
References to0 Calculus of Variation:
1, Woods, Frederick S.: Advanced Calculus, Ginn & Co.,
2. Bligsg, Gilbert A.! Calculus of Variations, 1825,

NOTE 13

The function
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dg\)

f (x,g.8') = 1 -x7) . - wx'g®

satisfies Buler's differential equation, which is the neces-
sary though not sufficient condition for a minimum,

ag'ax< >

for
Qi = - 2wx g
g
and
bf L3 (bg\
—z 21 - -2
og? ( ) ax/
a af) 2-5‘——{(1-::7)(-‘5‘-&)}
0g dx
therefore

of _ & jﬂi) = “2ux'g - 2 L. j}l -x7) (4a 1
dg  ax \dg' ax ax/J

and since

4 {(1 - x7) g‘.-g-l = -wx'g (12)
ax j

dx

thus,

of _ 4 EE.):OI
dg 9x \dg!

NOTE 14

. References to Legendre's Polynomials.

1, Jahnke, E,, and Emde, F,: Funktionentafeln mit formeln.
und kxurven, Dover Publications, 1943,

2. Woods, ¥, S,i Advanced Calculus. Ginn & Co., 1926,
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. NOTE 15

¥. ten Bosch in "Die Warmefibertraguyng® (Julius Springer
(Berlin), 1936) rearranged equation (21) to yield:

84 v 0,85 g )
= 2 Oi pages '{1 + 0,1 &% + 00 '}
Re -\

which when more terms are added becomés

: :2.-,7 z ‘*39.27_2. —-31.96 2
0.0384 +C - Oe254d ' 0.25 a 0.25 4
@ = 1+ 0.1 ei® + 0.9 6° - 0.023 &°

Reo.as

S

which is a more convenient form of equation (21), VNotice,
however, that these equations do pnot yield an infinite unit
thermal conductance at the entrance where 2z = 0, which is
in contradiction to Latzko's statement in the paragraph fol=-
lowing equation (21), :

NOTE 16

The momentum equation of the boundary layer can be
written

aJ aQ dp 2
T " PU Te (2rs -8 ) mw T, (22)
Referring to figure 3, it can be determined that!
5 :
aJ - 2
1 &z = (azt//‘pu 2n (r - ¥y) dy) dsz
. 6
the flux of momentum across cd that exceeds that across
ab
ad _ 2 _.» 2 J1274 _ 2303
iz 7 "F P ‘[U {-207" 345 g}
165v (8¢ - 22) 1274 2303 ay 7 4t 3Q
- . 32U{ £ - §}:’—'—~PU""5-Z
(4t ~ 22¢+ 165) 207 690 dz dz
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the invard flux of-momentum across. . bd

- pU %% =+ 2prr2[U (€~ 1)

_165v (8t- 22)(1- 2t + 52)]¢1§ dp

2
> . 3 — - = (2r5 - §" ) az
(4t~ - 22t + 165) dz  dz

——

difference in pressure between ab and cd

- 2 (ors - §%) .. 20z2pU(BE- E7)165v 4k~ 11) ab
(4t® ~ 22¢ + 165)% dz

2erodz

retarding force at the wall

Y
7/ 7/ 4
-~ 2rmt, = -~ 2rmp ELN ty'e (J;>
7B/ \f{r

where 8

Q = d/ﬁzﬂ (r - y) u ay

0

By substituting these values into equation (22), there is
obtained equation (28),

NOTE 17

‘hough the original article gave =z in equation (28),
it is obviously =z, after considering the limits of the

integration. _
'NOTE 18

The_original article indicates that the curve in figure



-

%
A
Fg W

L

NACA TM Fo, 1068 55

4 is a graph of equation (29), However, on replotting the
expression, a discrepancy was found. It appears (see fig.

" A=II) that the curve given by Latzko in figure 4 1is in er-

ror,
NOTE 19
From figure A~II, it is seen that for & =1, X = 0.686
' 4
AN
vd a
or 5/, a Ya
- .
Zo = (0.686) * 4 -v—>
= 0.625 & EQ>LZ
v

Latzko derived from figure 4, that
Y,
, va\ 4
ZO = Oo 093 d- (""u‘—‘>

WOTE 20

This plot is given in the original article under fig-
ure 7A with ordinate misrepresonted as K.

WOTE 21

A plot of KX against £, which was to have been given
by figure 7A, is missing in the original article., It is
presented here in figure A-~III,

—— e s ——



NACA TM No, 1068 56

s s e n.-. .. .. NOTEB .22.. . . . . .

An example of case 4.

!
}
! - = =
) n o, o for case 2
}
~ f \ - oy = a for case 3
l 1\ {
‘ \ i .
| P \ ay = « for case 4
z \ \
i

NOTE 23

The original article gave the equation,

e It..should be . .
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o oo . YOTE 24

This equation is derived for a fluid the Prandtl number
of which is unity. Colburn* glves an expression for heat
transfer at plane sur;aces which is valid for Pr other
than unity,

Colburn's equation is

N s Ve
& (SN T L 0,036 <%1>
oU \ k v

which is practically the same as Latzko's equation for Pr
= 1

*Colburn, Allan P,! A Method of Correlating Forced
Convection Eeat Transfer Data and a Comparison with Fluid
Friction, Trans, Am. Inst. Chem, Eng,, vol, XXIX, 1933, p.
199, equation (22).

i




e TABLE A-1 !
Velocity ) o
distri- Latzko 1/7th-power law Logarithmic
bution |

VRN VRPRRY, -
1 B& >/7 <> B<19-> ! <§r_\ ’ L4/":"—‘0" ln + C
o v/ kS MY
4 & A T
& NS CEAN AL _.(To\‘*/ o L
dy 7 \p/ 7 \p / e
] To/8 Tolp xy® (1-L)du
du/dy du/dy r/ dy
/T >3/7 v, ¥ < 7 \% /To Yo Y, ¥ \ . T
€ 0.794 P 7y T {1 - — 0.794 | — v 7 71--— 1 - L) /2
\p y 3r \? y_ 0 |7 r/J p
2 2/T N\~ 3, 12 %, 2/T .\~ 2 ¥ Yy
1= ==-1(0.794) (—% 7y /"(1-3) (0.794) /~3> ot :f6/7> (1-— x%y* ( - ->
du p 2 \p T T
ay _ ‘
» . 1 [S) e ——— -
(1o ey, . 77 N4 1 - '_'
l 0.794&—") v 7y ’(1-i’—> (0.794) / > /7,;6/ /1 - L ;
P 3r r
. "‘1/"14 1 [ 6/7 “‘/14 3 8, ’ ’
1 0.794 (To 1,/’ % 1__3’__\. 0.794 (To " 1 - L L h-Z
Xr Kr o v 2r/ Kr \p v ¥ r rdT r
* %k &, o\ 54 &/ * % ’
L 0.588 Ll (1 - L \7*F 0.538 ¥~ /1 - L T hA-L
Yr T 2r r T r r
: .
Y = 1 - 2,
v < 2r -
_ **For Re ~ 60,000, v = 0,175 x 10 ° £t° ¥ = 0,4, :

¥**See fig., A-1 for plot of

T
against —,
r

‘Of M vovn5
/
/
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Figure 1A.- The three
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Pigure 2.~ Variation of heat transfer coefficient along pipe length for
hydroiynamically fully developed state (¢ = 0.304 Cal/m3, v =
18.3 m/sec, v= 0.175 cm®/sec, 1 = 2.2 cm).
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Pigure 6.- End temperature distribution for hydrodynamically developed
state (e) and distribution at the end cross-section of the
entrance run (h).
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Fig. A-ITI
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